

Polymer 41 (2000) 4401–4407

polymer

Poly 1,3-butylene adipate Reoplex[®] as high molecular weight plasticizer for PVC-based cling films—microstructure and number-average molecular weight studied by ${}^{1}H$ and ${}^{13}C$ NMR

C. Oriol-Hemmerlin^a, Q.T. Pham^{b,*}

a *Universite´ de Limoges, Faculte´ de Me´decine et de Pharmacie, 2 rue du Docteur Marcland, F-87000 Limoges, France* b *CNRS, Service Central d'Analyse BP 22, F-69390 Vernaison, France*

Received 13 April 1999; received in revised form 9 September 1999; accepted 14 September 1999

Abstract

Reoplex[®] 346, a low number-average molecular weight (M_n) poly 1,3-butylene adipate—frequently used as plasticizer in PVC-based cling-films—was studied by ¹H and quantitative ¹³C NMR. It was found that Reoplex[®] results from the linear polyesterification of adipic acid (A) by an excess of butane 1,3-diol (B) with a (A/B) molar ratio of 0.88 giving a polyester having a number-average degree of polymerization ($\overline{DP_n}$) and an absolute $\overline{M_n}$ of 15.7 and 1600 g/mol, respectively. As primary alcohol function is more reactive than secondary alcohol, Reoplex[®] chain-ends are made up of 28.6% of primary alcohol and 71.4% of secondary alcohol. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Reoplex[®] 346; Plasticizer; Poly-1,3 butylene adipate

1. Introduction

Common plasticizers for thin PVC-based cling films widely used for packaging foods—are typically diesters: di 2-ethyl hexyl adipate (DEHA) or di 2-ethyl hexyl phthalate (DEHP). Their specific migrations in organic solvents fat simulants have been studied [1–7].

Because of their low molecular weights (MW), DEHA [8] $(MW = 370 \text{ g/mol})$ as well as DEHP [7] $(MW =$ 390 g/mol) readily migrate into foods. In order to reduce the contamination of packaged foods, these low MW plasticizers may be—partially or totally—replaced by a low number-average molecular weight (M_n) polyester, namely the poly butane 1,3-diol adipate or poly 1,3-butylene adipate (PBA—Reoplex[®] 346) [4,9,10].

To our knowledge, the actual physical chemical characteristics (diacid/diol molar ratio, rates of esterification, microstructure of the obtained polycondensate, etc.) of the commercial Reoplex[®] are not perfectly known, particularly its absolute \bar{M}_n ($\bar{M}_{n,a}$). The present paper deals with its indepth examination by ¹ H and *quantitative* 13C NMR in order to precisely determine its number-average degree of polymerization (\overline{DP}_n) giving $\overline{M}_{n,a}$.

2. Experimental

Reagent: Reoplex[®] 346 (Ciba-Geigy) was used as purchased.

¹H and ¹³C NMR spectrometry: For quantitative determinations using ¹H and ¹³C NMR, and for $({}^{1}H/{}^{13}C)$ 2D NMR, spectra were recorded using a Bruker ARX 300 (300 and 75.5 MHz for 1 H and 13 C, respectively) and a Bruker DRX 400 (400.1 and 100.6 MHz for ${}^{1}H$ and ${}^{13}C$, respectively) with Reoplex[®] samples dissolved in CDCl₃ or DMSO-d₆. Typical analysis conditions were as follows.

 ${}^{1}H$ (400 MHz) NMR: Concentration of Reoplex[®] 346 in $CDCl₃ = 5\%$ (w/v); temperature = 25^oC; pulse angle = 30^o; acquisition time $= 2.7$ s for 32k-words; sweep width $= 6$ kHz; delay $= 2.3$ s; number of scans $= 16$.

Quantitative ^{13}C (75.5 MHz) NMR: Concentration of Reoplex[®] 346 in CDCl₃ = 80% (w/v) in 10 mm NMR tube with about 40 mg of Cr acetylacetonate $(Cr (acac)₃$ relaxing agent); temperature = 25° C; pulse angle = 66° ; acquisition time $= 1.3$ s for 32k-words; sweep width $= 18.8$ kHz; delay $= 8$ s; number of scans $= 6000$.
2D-Hetero-nuclear Multiple Ouantum Coherence

2D-Hetero-nuclear Multiple (HMQC) spectra were performed using a Bruker DRX 400 with a 5 mm inverse *Z*-gradient probe and a solution of Reoplex[®] in DMSO-d₆ at room temperature. Spectral widths: $F_2({}^1H) = 2200 \text{ Hz}, \quad F_1({}^{13}C) = 5330 \text{ Hz}.$ Time

^{*} Corresponding author. Fax: $+33-04-78-02-71-87$.

E-mail address: qt.pham@sca.cnrs.fr (Q.T. Pham).

^{0032-3861/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0032-3861(99)00662-X

(Low Mn poly 1,3-butylene adipate Reoplex 346)

Scheme 1.

Fig. 1. Quantitative ¹³C (75.5 MHz) NMR spectrum of low \bar{M}_n poly 1,3-butylene adipate Reoplex[®] 346; solvent: CDCl₃; relaxing agent: Cr(acac)₃; room temperature.

Fig. 2. ¹H (400 MHz) NMR spectrum of low \bar{M}_n poly 1,3-butylene adipate Reoplex[®] 346; solvent: CDCl₃; room temperature.

domains: $({}^{1}H) = 1024$ and $({}^{13}C) = 512$; acquisition time $({}^{1}H) = 0.23$ s; delay $({}^{1}H) = 2$ s. Gaussian apodization was applied in both ${}^{1}H$ and ${}^{13}C$ domains.

3. Results and discussion

Because of its higher molecular weight (MW) or more precisely its higher number-average molecular weight (\bar{M}_n) , poly 1,3-butylene adipate (PBA) plasticizer migrates less from cling films into packaged foods than the classical low MW diesters like di 2-ethyl hexyl adipate (DEHA; $MW = 370$ g/mol) [4,9,10] or di 2-ethyl hexyl phthalate (DEHP; MW = 390 g/mol). Commercial PBA or Reoplex[®] 346—synthesised by polyesterification in bulk of adipic acid (A) with an excess of butane 1,3-diol (B) is a stable linear low \bar{M}_n polyester having two expected hydroxyl chain-ends (more stable than acid ends) (Scheme 1).

By Size Exclusion Chromatography (SEC) with polystyrene standards, \overline{M}_n (SEC) and \overline{M}_w (SEC) (weight-average molecular weight) of Reoplex[®] equal 1950 and 4000, respectively [10,11]. To our knowledge, only one published paper [10] deals with some physical characteristics of Reoplex[®]: its (i) fractionation in seven fractions using preparative SEC; and (ii) partial examination by ${}^{1}H$ NMR

and estimation of the MWs $(\bar{M}_n s, \text{ more properly})$ of the six first isolated fractions.

In the present quantitative study of Reoplex[®], intensive use of ¹H, quantitative ¹³C NMR and ¹H/¹³C-two dimension (2D) HMQC (Hetero-nuclear Multiple Quantum Coherence) NMR permits the assignment of all the ${}^{1}H$ and ${}^{13}C$ resonance peaks, thus the easy calculations of: (i) the A/B molar ratio; (ii) the individual rates of esterification of the primary and secondary alcohol functions of B as well as its overall rate of esterification (the completion of esterification of acid groups of A may be verified by ${}^{13}C$ NMR) hence (iii) the actual number average degree of polymerization (\overline{DP}_n) and the corresponding $\bar{M}_{\text{n.a}}$.

3.1. NMR spectrometry

¹H and ¹³C NMR spectra of high \bar{M}_n poly alkyl diol adipates are relatively well known [12]. The present case deals with a low \bar{M}_n PBA and, because of the high proportions of primary (BI) and secondary (BII) alcohol chainends (Scheme 1), its ^{13}C (Fig. 1) and ^{1}H (Fig. 2) spectra are more complex, particularly in the (55–70 ppm) and $(170-175 \text{ ppm})$ regions of ¹³C and the $(1.7-1.8 \text{ ppm})$ and $(3.5-5.3$ ppm) regions of ¹H resonances. Precise assignments of all these ${}^{1}H$ and ${}^{13}C$ resonances require (${}^{1}H$, ${}^{1}H$)

Fig. 3. $\rm ^1H/^{13}C$ HMCQ spectrum of low \bar{M} _n poly 1,3-butylene adipate Reoplex[®] 346; solvent: DMSO-d₆; room temperature. Enlargement of the (¹H, 1.5– 2.5 ppm) and $(^{13}C, 32-41$ ppm) domains.

decoupling experiments, 135° ¹³C DEPT (Distorsionless Enhancement by Polarisation Transfer) and $H^{13}C$ -HMQC spectra (Figs. 3 and 4).

3.1.1. Quantitative 13C NMR spectrum (Fig. 1)

Of interest is the observation that only traces of COOH are found at 174.4 ppm. The polyesterification in bulk of the $(aA + bB, b > a)$ mixture is actually almost complete. This important information cannot be obtained by ${}^{1}H$ NMR.

For in-chain A-units, compared to known 13 C NMR spectra of poly alkyl-diol adipates [12; p. 169,171,173], here the classes of esters' functions—primary (BII) and secondary (BI) esters—affect the δ -values of both A¹ (2CO) and A² $(2CH₂)$. Each one of them splits into two lines: 172.0 and 172.4 ppm for A^1 , 33.0 and 33.4 ppm for A^2 (Figs. 1 and 3). Only the remote central A^3 (2CH₂) remains unaffected at 23.6 ppm.

Taking into account the smaller proportion of secondary

ester $BI³$ (secondary alcohol is known to be less reactive than primary alcohol) the smallest CO-ester line at 172.8 ppm should be assigned to the carboxy A^1 group linked to BI chain-end (A^1-BI) sequence). The stronger CO resonance of the primary ester of the A^1-BII sequence should be overlapped by the two strongest in-chain A^1 carboxy lines (172.0; 172.4 ppm).

The better 13 C NMR spectral resolution allows the discrimination of all the four couples of lines of BI and BII chainends (Figs. 1 and 3). The BII/BI molar ratio may easily be deduced by comparing the relative intensities of $BII¹$ (61.0 ppm), BH^3 (63.8 ppm) and BH^2 (37.3 ppm) to those of BI^1 (57.9 ppm), BI^3 (67.5 ppm) and BI^2 (38.2 ppm), respectively (Figs. 1 and 4).

3.1.2. ¹ H NMR spectrum (Fig. 2)

The strongest ¹H resonances of in-chain A and B units are easily identified. The two unresolved wide resonances

Fig. 4. ¹H/¹³C HMCQ spectrum of low \bar{M}_n poly 1,3-butylene adipate Reoplex[®] 346; solvent: DMSO-d₆; room temperature. Enlargement of the (¹H, 3.4– 5.4 ppm) and $(^{13}C, 59-70$ ppm) domains.

centred at 1.654 and 2.320 ppm belong to A^3 (4H) and A^2 (4H), respectively [12; p. 170,172,174]. The two esterified primary B^1 (2H, triplet) and secondary B^3 (1H, sextet) alcohol-ends are found at 4.10 and 5.00 ppm, respectively. Finally, the two central B^2 protons resonate around 1.90 ppm $(CH₂,$ unresolved multiplet), and those of the inchain methyls $B⁴$ (strongest doublet) at 1.262 and 1.246 ppm.

The presence of monoesterified BI (primary alcohol end) and BII (secondary alcohol end) give rise to new ${}^{1}H$ and ${}^{13}C$ resonances that may only be assigned by $\mathrm{^{1}H/^{13}C\text{-}2D}$ HMQC NMR spectra (Figs. 3 and 4). As previously stated ($BI³$ < BII^1), the intensities of the BI ${}^1\text{H}$ resonances are logically expected to be smaller than those of the BII's ones.

Compared to the $\delta(^1H)$ -values of in-chain B

resonances—because of the presence of methylene— $(BI¹$ —unresolved multiplet due to the overlapping of CH₂ and OH resonances; $\delta = 3.6$ ppm) and methine—(BII³ sextet; $\delta = 3.90$ ppm) alcohol ends—the two corresponding ester groups BI^3 (1H sextet) and BII^1 (2H unresolved multiplet) undergo downfield shifts and resonate at 5.12 and 4.30 ppm, respectively. In contrast, the resonances of their central methylenes— BI^2 and BI^2 —shift to higher fields, at around 1.75 ppm. The doublet of the BH^4 -methyl protons appears at 1.216 and 1.232 ppm, at slightly higher field than that of the in-chain methyls $B⁴$. Finally, only one line of the BI^4 -methyl proton doublet is visible at 1.279 ppm, the second one being overlapped by the strongest in-chain $B⁴$ methyl doublet (Fig. 3).

As previously, the BII/BI molar ratio (or (secondary

Microstructure of Reoplex[®] 346 (poly butane 1,3-diol adipate) studied by ¹H and quantitative 13 C NMR. Individual rates of esterification of primary (EI %) and secondary (EII %) alcohol functions and overall rate (EB %) of esterification of butane 1,3-diol (B) in excess by adipic acid (A) in bulk. A/B: (adipic acid/butane 1,3-diol) molar ratio $(r < 1)$. \overline{DP}_n : number-average degree of polymerisation

	$EI(\%)$	$EII(\%)$	$EB(\%)$	$r = A/B$	DP_n
Eq. no. $\mathrm{^{1}H}$ NMR	(3) 93.1	(4) 82.3	(5) 87.8	(6) 0.878	(7) 15.4
13 C NMR	93.1	83.3	88.2	0.882	15.9

alcohol-end/primary alcohol-end) ratio) may be easily calculated by comparing the relative intensity of $BII³ (1H)$ to that of BI^3 (1H) and cross-checked by quantitative ${}^{13}C$ NMR.

3.1.3. Quantitative determinations

The BII/BI ratio may be easily calculated by ${}^{1}H$ [(BII/ BI _H—Fig. 2, Eq. (1)] or ¹³C [(BII/BI)_C—Fig. 1, Eq. (2)] NMR as following:

$$
\left(\frac{\text{BII}}{\text{BI}}\right)_H = \frac{\text{BII}^3}{\text{BI}^3} \tag{1}
$$

$$
\left(\frac{\text{BII}}{\text{BI}}\right)_{\text{C}} = \frac{\text{BII}^1}{\text{BI}^1} = \frac{\text{BII}^3}{\text{BI}^3} = \frac{\text{BII}^2}{\text{BI}^2} \tag{2}
$$

 BI^1 , BI^2 , BI^1 , etc. are the corresponding ¹H or ¹³C relative intensities.

Within experimental errors, one has:

$$
BII/BI = secondary alcohol-end/primary alcohol-end = 2.5 \pm 0.1
$$

Thus, in the present polyesterification in bulk of adipic acid A by an excess of butane 1,3-diol B, the (primary esterend/secondary ester-end) ratio ($= \text{BII}^1/\text{BI}^3$) amounts to 2.5 or, in other words, the primary alcohol function is 2.5 times more reactive than the secondary one.

The individual rates of esterification of primary (EI %) and secondary (EII %) and the overall (EB %) rate of esterification are given by Eqs. (3) – (5) .

$$
EI\% = \frac{(B^1 + BH^1) \times 10^2}{B^1 + BH^1 + BI^1}
$$
 (3)

$$
EH\% = \frac{(B^3 + BI^3) \times 10^2}{B^3 + BI^3 + BH^3}
$$
 (4)

$$
EB\% = \frac{(EI\% + EI\%)}{2} \tag{5}
$$

 $B¹$ and $B³$ are the relative intensities of the corresponding in-chain ester groups CH₂O and CHO.

The esterification of A being almost complete, the $r = A/$ B molar ratio equals (Eq. (6)):

$$
r = A/B = EB \times 10^{-2}
$$
 (6)

All the values calculated by using Eqs. (3)–(6) are reported in Table 1.

3.2. Number-average degree of polymerization (\overline{DP}_n) and *absolute number-average molecular weight* $(\bar{M}_{n,a})$

Reoplex[®] chains, resulting from the linear polyesterification in bulk of A by an excess of B and bearing two hydroxyl ends, may statistically be represented as following.

BI(or BII)ABA...ABABII(or BI)

Here, with $r = 0.88 \pm 0.002 \times 1$, the maximum value of DP_n reached at complete esterification of A (only traces of COOH were found around 174.5 ppm (Fig. 1)) is given by Eq. (7) [13] (Table 1):

$$
\overline{\text{DP}}_{n} = \frac{1+r}{1-r} = 15.7 \pm 0.3\tag{7}
$$

 $(DP = 1$ corresponds to A or B monomer)

The polydispersity index $(= 1 + r)$ amounts to near 1.9. For a given value of \overline{DP}_n , the corresponding number of esterification reactions equals $(\overline{DP}_n - 1)$. Thus Reoplex[®] results from the polyesterification in bulk of

•
$$
\left(\frac{\overline{DP}_n - 1}{2} + 1\right)
$$
 B monomer units by
\n• $\left(\frac{\overline{DP}_n - 1}{2}\right)$ A monomer units

with the loss of $(\overline{DP}_n - 1)$ moles of H₂O, consequently its $\bar{M}_{\text{n,a}}$ may be easily calculated (Eq. (8)):

$$
\bar{M}_{n,a} = \frac{\overline{DP}_n - 1}{2} \times MW(A) + \left(\frac{\overline{DP}_n - 1}{2} + 1\right) \times MW(B)
$$

$$
- \left(\overline{DP}_n - 1\right) \times MW(H_2O)
$$
(8)

with $MW(A) = 146.14$ g/mol, $MW(B) = 90.12$ g/mol and $MW(H₂O) = 18$ g/mol, one gets:

$$
\bar{M}_{n,a} = 100.13 \ \overline{DP}_n - 10.01 \tag{9}
$$

hence $\bar{M}_{n,a}$ (Reoplex[®]) = 1562 \pm 20 g/mol.

As usually observed, here the value of $\bar{M}_{n,a}$ calculated by ¹H and quantitative 13 C NMR is smaller than that found by SEC ($= 1900$ g/mol) using polystyrene standards [10,11].

References

- [1] Messadi D, Vergnaud M. J Appl Polym Sci 1982;27:3945–55.
- [2] Startin JR, Sharman M, Rose MD, Parker I, Mercer AJ, Castle L, Gilbert J. Food Additives Contaminants 1987;4:385–98.
- [3] Monroy E, Wolff N, Ducruet V, Feigenbaum A. Analusis 1993;21:221–6.
- [4] Castle L, Jickells SM, Nichol J, Johns SM, Gramshaw JW. J Chromatogr A 1994;675:261–6.
- [5] Hamdani M, Feigenbaum A. Food Additives Contaminants 1996;13:717–30.
- [6] Kondyli E, Demertzis PG, Kontominas MG. Food Chemistry 1990;36:1–10.
- [7] Papaspyrides CD. J Appl Polym Sci 1986;32:6025–32.
- [8] Sandberg AE, Vaz R, Albanus L, Mattson P, Nilsson K. Var Föda 1992;34:470–82.
- [9] Castle L, Mercer AJ, Gilbert J. Food Additives Contaminants 1988;5:277–82.
- [10] Castle L, Mercer AJ, Gilbert J. Food Additives Contaminants 1991;8:565–76.
- [11] Ciba-Geigy, Private communication.
- [12] Pham QT, Pétiaud R, Waton H, Llauro-Darricades MF. Proton and carbon NMR spectra of polymers, London, UK/Boca Raton, FL: Penton Press/CRC Press, 1991.
- [13] Odian G. Principles of polymerization, 2. New York: Wiley, 1981 p. 83–84.