

Polymer 41 (2000) 4401-4407

polymer

Poly 1,3-butylene adipate Reoplex[®] as high molecular weight plasticizer for PVC-based cling films—microstructure and number-average molecular weight studied by ¹H and ¹³C NMR

C. Oriol-Hemmerlin^a, Q.T. Pham^{b,*}

^aUniversité de Limoges, Faculté de Médecine et de Pharmacie, 2 rue du Docteur Marcland, F-87000 Limoges, France ^bCNRS, Service Central d'Analyse BP 22, F-69390 Vernaison, France

Received 13 April 1999; received in revised form 9 September 1999; accepted 14 September 1999

Abstract

Reoplex[®] 346, a low number-average molecular weight (\overline{M}_n) poly 1,3-butylene adipate—frequently used as plasticizer in PVC-based cling-films—was studied by ¹H and quantitative ¹³C NMR. It was found that Reoplex[®] results from the linear polyesterification of adipic acid (A) by an excess of butane 1,3-diol (B) with a (A/B) molar ratio of 0.88 giving a polyester having a number-average degree of polymerization (\overline{DP}_n) and an absolute \overline{M}_n of 15.7 and 1600 g/mol, respectively. As primary alcohol function is more reactive than secondary alcohol, Reoplex[®] chain-ends are made up of 28.6% of primary alcohol and 71.4% of secondary alcohol. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Reoplex® 346; Plasticizer; Poly-1,3 butylene adipate

1. Introduction

Common plasticizers for thin PVC-based cling films widely used for packaging foods—are typically diesters: di 2-ethyl hexyl adipate (DEHA) or di 2-ethyl hexyl phthalate (DEHP). Their specific migrations in organic solvents fat simulants have been studied [1–7].

Because of their low molecular weights (MW), DEHA [8] (MW = 370 g/mol) as well as DEHP [7] (MW = 390 g/mol) readily migrate into foods. In order to reduce the contamination of packaged foods, these low MW plasticizers may be—partially or totally—replaced by a low number-average molecular weight (\bar{M}_n) polyester, namely the poly butane 1,3-diol adipate or poly 1,3-butylene adipate (PBA—Reoplex[®] 346) [4,9,10].

To our knowledge, the actual physical chemical characteristics (diacid/diol molar ratio, rates of esterification, microstructure of the obtained polycondensate, etc.) of the commercial Reoplex[®] are not perfectly known, particularly its absolute \bar{M}_n ($\bar{M}_{n,a}$). The present paper deals with its indepth examination by ¹H and *quantitative* ¹³C NMR in order to precisely determine its number-average degree of polymerization (\overline{DP}_n) giving $\bar{M}_{n,a}$.

2. Experimental

Reagent: Reoplex[®] 346 (Ciba-Geigy) was used as purchased.

¹*H* and ¹³*C NMR* spectrometry: For quantitative determinations using ¹H and ¹³*C* NMR, and for (${}^{1}H/{}^{13}C$) 2D NMR, spectra were recorded using a Bruker ARX 300 (300 and 75.5 MHz for ¹H and ¹³*C*, respectively) and a Bruker DRX 400 (400.1 and 100.6 MHz for ¹H and ¹³*C*, respectively) with Reoplex[®] samples dissolved in CDCl₃ or DMSO-d₆. Typical analysis conditions were as follows.

¹*H* (400 MHz) NMR: Concentration of Reoplex[®] 346 in $CDCl_3 = 5\%$ (w/v); temperature = 25°C; pulse angle = 30°; acquisition time = 2.7 s for 32k-words; sweep width = 6 kHz; delay = 2.3 s; number of scans = 16.

Quantitative ¹³*C* (75.5 MHz) NMR: Concentration of Reoplex[®] 346 in $CDCl_3 = 80\%$ (w/v) in 10 mm NMR tube with about 40 mg of Cr acetylacetonate (Cr(acac)₃—relaxing agent); temperature = 25°C; pulse angle = 66°; acquisition time = 1.3 s for 32k-words; sweep width = 18.8 kHz; delay = 8 s; number of scans = 6000.

2D-Hetero-nuclear Multiple Quantum Coherence (HMQC) spectra were performed using a Bruker DRX 400 with a 5 mm inverse Z-gradient probe and a solution of Reoplex[®] in DMSO-d₆ at room temperature. Spectral widths: $F_2(^{1}H) = 2200$ Hz, $F_1(^{13}C) = 5330$ Hz. Time

^{*} Corresponding author. Fax: +33-04-78-02-71-87.

E-mail address: qt.pham@sca.cnrs.fr (Q.T. Pham).

^{0032-3861/00/\$ -} see front matter 2000 Elsevier Science Ltd. All rights reserved. PII: S0032-3861(99)00662-X

(Low Mn poly 1,3-butylene adipate Reoplex 346)

Scheme 1.

Fig. 1. Quantitative ¹³C (75.5 MHz) NMR spectrum of low \bar{M}_n poly 1,3-butylene adipate Reoplex[®] 346; solvent: CDCl₃; relaxing agent: Cr(acac)₃; room temperature.

Fig. 2. ¹H (400 MHz) NMR spectrum of low M_n poly 1,3-butylene adipate Reoplex[®] 346; solvent: CDCl₃; room temperature.

domains: $({}^{1}H) = 1024$ and $({}^{13}C) = 512$; acquisition time $({}^{1}H) = 0.23$ s; delay $({}^{1}H) = 2$ s. Gaussian apodization was applied in both ${}^{1}H$ and ${}^{13}C$ domains.

3. Results and discussion

Because of its higher molecular weight (MW) or more precisely its higher number-average molecular weight (\overline{M}_n), poly 1,3-butylene adipate (PBA) plasticizer migrates less from cling films into packaged foods than the classical low MW diesters like di 2-ethyl hexyl adipate (DEHA; MW = 370 g/mol) [4,9,10] or di 2-ethyl hexyl phthalate (DEHP; MW = 390 g/mol). Commercial PBA or Reoplex[®] 346—synthesised by polyesterification in bulk of adipic acid (A) with an excess of butane 1,3-diol (B) is a stable linear low \overline{M}_n polyester having two expected hydroxyl chain-ends (more stable than acid ends) (Scheme 1).

By Size Exclusion Chromatography (SEC) with polystyrene standards, \bar{M}_n (SEC) and \bar{M}_w (SEC) (weight-average molecular weight) of Reoplex[®] equal 1950 and 4000, respectively [10,11]. To our knowledge, only one published paper [10] deals with some physical characteristics of Reoplex[®]: its (i) fractionation in seven fractions using preparative SEC; and (ii) partial examination by ¹H NMR and estimation of the MWs (\bar{M}_n s, more properly) of the six first isolated fractions.

In the present quantitative study of Reoplex[®], intensive use of ¹H, quantitative ¹³C NMR and ¹H/¹³C-two dimension (2D) HMQC (Hetero-nuclear Multiple Quantum Coherence) NMR permits the assignment of all the ¹H and ¹³C resonance peaks, thus the easy calculations of: (i) the A/B molar ratio; (ii) the individual rates of esterification of the primary and secondary alcohol functions of B as well as its overall rate of esterification (the completion of esterification of acid groups of A may be verified by ¹³C NMR) hence (iii) the actual number average degree of polymerization (\overline{DP}_n) and the corresponding $\overline{M}_{n.a}$.

3.1. NMR spectrometry

¹H and ¹³C NMR spectra of high \bar{M}_n poly alkyl diol adipates are relatively well known [12]. The present case deals with a low \bar{M}_n PBA and, because of the high proportions of primary (BI) and secondary (BII) alcohol chainends (Scheme 1), its ¹³C (Fig. 1) and ¹H (Fig. 2) spectra are more complex, particularly in the (55–70 ppm) and (170–175 ppm) regions of ¹³C and the (1.7–1.8 ppm) and (3.5–5.3 ppm) regions of ¹H resonances. Precise assignments of all these ¹H and ¹³C resonances require (¹H, ¹H)

Fig. 3. ¹H/¹³C HMCQ spectrum of low \bar{M}_n poly 1,3-butylene adipate Reoplex[®] 346; solvent: DMSO-d₆; room temperature. Enlargement of the (¹H, 1.5–2.5 ppm) and (¹³C, 32–41 ppm) domains.

decoupling experiments, 135° ¹³C DEPT (Distorsionless Enhancement by Polarisation Transfer) and ¹H/¹³C-HMQC spectra (Figs. 3 and 4).

3.1.1. Quantitative ¹³C NMR spectrum (Fig. 1)

Of interest is the observation that only traces of COOH are found at 174.4 ppm. The polyesterification in bulk of the (aA + bB, b > a) mixture is actually almost complete. This important information cannot be obtained by ¹H NMR.

For in-chain A-units, compared to known ¹³C NMR spectra of poly alkyl-diol adipates [12; p. 169,171,173], here the classes of esters' functions—primary (BII) and secondary (BI) esters—affect the δ -values of both A¹ (2CO) and A² (2CH₂). Each one of them splits into two lines: 172.0 and 172.4 ppm for A¹, 33.0 and 33.4 ppm for A² (Figs. 1 and 3). Only the remote central A³ (2CH₂) remains unaffected at 23.6 ppm.

Taking into account the smaller proportion of secondary

ester BI³ (secondary alcohol is known to be less reactive than primary alcohol) the smallest CO-ester line at 172.8 ppm should be assigned to the carboxy A^1 group linked to BI chain-end (A^1 -BI sequence). The stronger CO resonance of the primary ester of the A^1 -BII sequence should be overlapped by the two strongest in-chain A^1 carboxy lines (172.0; 172.4 ppm).

The better ¹³C NMR spectral resolution allows the discrimination of all the four couples of lines of BI and BII chainends (Figs. 1 and 3). The BII/BI molar ratio may easily be deduced by comparing the relative intensities of BII¹ (61.0 ppm), BII³ (63.8 ppm) and BII² (37.3 ppm) to those of BI¹ (57.9 ppm), BI³ (67.5 ppm) and BI² (38.2 ppm), respectively (Figs. 1 and 4).

3.1.2. ¹H NMR spectrum (Fig. 2)

The strongest ¹H resonances of in-chain A and B units are easily identified. The two unresolved wide resonances

Fig. 4. ¹H/¹³C HMCQ spectrum of low \bar{M}_n poly 1,3-butylene adipate Reoplex[®] 346; solvent: DMSO-d₆; room temperature. Enlargement of the (¹H, 3.4–5.4 ppm) and (¹³C, 59–70 ppm) domains.

centred at 1.654 and 2.320 ppm belong to A^3 (4H) and A^2 (4H), respectively [12; p. 170,172,174]. The two esterified primary B^1 (2H, triplet) and secondary B^3 (1H, sextet) alcohol-ends are found at 4.10 and 5.00 ppm, respectively. Finally, the two central B^2 protons resonate around 1.90 ppm (CH₂, unresolved multiplet), and those of the inchain methyls B^4 (strongest doublet) at 1.262 and 1.246 ppm.

The presence of monoesterified BI (primary alcohol end) and BII (secondary alcohol end) give rise to new ¹H and ¹³C resonances that may only be assigned by ¹H/¹³C-2D HMQC NMR spectra (Figs. 3 and 4). As previously stated (BI³ \leq BII¹), the intensities of the BI ¹H resonances are logically expected to be smaller than those of the BII's ones.

Compared to the $\delta({}^{1}H)$ -values of in-chain B

resonances—because of the presence of methylene— (BI¹—unresolved multiplet due to the overlapping of CH₂ and OH resonances; $\delta = 3.6$ ppm) and methine—(BII³ sextet; $\delta = 3.90$ ppm) alcohol ends—the two corresponding ester groups BI³ (1H sextet) and BII¹ (2H unresolved multiplet) undergo downfield shifts and resonate at 5.12 and 4.30 ppm, respectively. In contrast, the resonances of their central methylenes—BI² and BII²—shift to higher fields, at around 1.75 ppm. The doublet of the BII⁴-methyl protons appears at 1.216 and 1.232 ppm, at slightly higher field than that of the in-chain methyls B⁴. Finally, only one line of the BI⁴-methyl proton doublet is visible at 1.279 ppm, the second one being overlapped by the strongest in-chain B⁴methyl doublet (Fig. 3).

As previously, the BII/BI molar ratio (or (secondary

Table 1 Microstructure of Reoplex[®] 346 (poly butane 1,3-diol adipate) studied by ¹H and quantitative ¹³C NMR. Individual rates of esterification of primary (EI %) and secondary (EII %) alcohol functions and overall rate (EB %) of esterification of butane 1,3-diol (B) in excess by adipic acid (A) in bulk. A/B: (adipic acid/butane 1,3-diol) molar ratio (r < 1). \overline{DP}_n : number-average degree of polymerisation

	EI(%)	EII(%)	EB(%)	r = A/B	$\overline{\text{DP}}_n$
Eq. no.	(3)	(4)	(5)	(6)	(7)
¹ H NMR	93.1	82.3	87.8	0.878	15.4
¹³ C NMR	93.1	83.3	88.2	0.882	15.9

alcohol-end/primary alcohol-end) ratio) may be easily calculated by comparing the relative intensity of BII³ (1H) to that of BI³ (1H) and cross-checked by quantitative 13 C NMR.

3.1.3. Quantitative determinations

The BII/BI ratio may be easily calculated by ¹H [(BII/BI)_H—Fig. 2, Eq. (1)] or ¹³C [(BII/BI)_C—Fig. 1, Eq. (2)] NMR as following:

$$\left(\frac{\mathrm{BII}}{\mathrm{BI}}\right)_{H} = \frac{\mathrm{BII}^{3}}{\mathrm{BI}^{3}} \tag{1}$$

$$\left(\frac{\mathrm{BII}}{\mathrm{BI}}\right)_{\mathrm{C}} = \frac{\mathrm{BII}^{1}}{\mathrm{BI}^{1}} = \frac{\mathrm{BII}^{3}}{\mathrm{BI}^{3}} = \frac{\mathrm{BII}^{2}}{\mathrm{BI}^{2}}$$
(2)

BI¹, BI², BII¹, etc. are the corresponding ¹H or ¹³C relative intensities.

Within experimental errors, one has:

$$BII/BI =$$
 secondary alcohol-end/primary alcohol-end = 2.5 ± 0.1

Thus, in the present polyesterification in bulk of adipic acid A by an excess of butane 1,3-diol B, the (primary esterend/secondary ester-end) ratio ($=BII^{1}/BI^{3}$) amounts to 2.5 or, in other words, the primary alcohol function is 2.5 times more reactive than the secondary one.

The individual rates of esterification of primary (EI %) and secondary (EII %) and the overall (EB %) rate of esterification are given by Eqs. (3)–(5).

$$EI\% = \frac{(B^{1} + BII^{1}) \times 10^{2}}{B^{1} + BII^{1} + BI^{1}}$$
(3)

$$EII\% = \frac{(B^3 + BI^3) \times 10^2}{B^3 + BI^3 + BII^3}$$
(4)

$$EB\% = \frac{(EI\% + EII\%)}{2} \tag{5}$$

 B^1 and B^3 are the relative intensities of the corresponding in-chain ester groups CH₂O and CHO.

The esterification of A being almost complete, the r = A/B molar ratio equals (Eq. (6)):

$$r = A/B = EB \times 10^{-2} \tag{6}$$

All the values calculated by using Eqs. (3)–(6) are reported in Table 1.

3.2. Number-average degree of polymerization ($\overline{\text{DP}}_{n}$) and absolute number-average molecular weight ($\overline{M}_{n,a}$)

Reoplex[®] chains, resulting from the linear polyesterification in bulk of A by an excess of B and bearing two hydroxyl ends, may statistically be represented as following.

BI(or BII)ABA...ABABII(or BI)

Here, with $r = 0.88 \pm 0.002(<1)$, the maximum value of $\overline{\text{DP}}_{n}$ reached at complete esterification of A (only traces of COOH were found around 174.5 ppm (Fig. 1)) is given by Eq. (7) [13] (Table 1):

$$\overline{\rm DP}_{\rm n} = \frac{1+r}{1-r} = 15.7 \pm 0.3 \tag{7}$$

(DP = 1 corresponds to A or B monomer)

The polydispersity index (= 1 + r) amounts to near 1.9. For a given value of \overline{DP}_n , the corresponding number of esterification reactions equals $(\overline{DP}_n - 1)$. Thus Reoplex[®] results from the polyesterification in bulk of

•
$$\left(\frac{\overline{DP}_n - 1}{2} + 1\right)$$
 B monomer units by
• $\left(\frac{\overline{DP}_n - 1}{2}\right)$ A monomer units

with the loss of $(\overline{DP}_n - 1)$ moles of H₂O, consequently its $\overline{M}_{n,a}$ may be easily calculated (Eq. (8)):

$$\bar{M}_{n,a} = \frac{\overline{DP}_n - 1}{2} \times MW(A) + \left(\frac{\overline{DP}_n - 1}{2} + 1\right) \times MW(B)$$
$$- (\overline{DP}_n - 1) \times MW(H_2O)$$
(8)

with MW(A) = 146.14 g/mol, MW(B) = 90.12 g/mol and $MW(H_2O) = 18 \text{ g/mol}$, one gets:

$$\bar{M}_{\rm n,a} = 100.13 \ \overline{\rm DP}_{\rm n} - 10.01$$
 (9)

hence $\overline{M}_{n,a}$ (Reoplex[®]) = 1562 ± 20 g/mol.

As usually observed, here the value of $\overline{M}_{n,a}$ calculated by ¹H and quantitative ¹³C NMR is smaller than that found by SEC (= 1900 g/mol) using polystyrene standards [10,11].

References

- [1] Messadi D, Vergnaud M. J Appl Polym Sci 1982;27:3945-55.
- [2] Startin JR, Sharman M, Rose MD, Parker I, Mercer AJ, Castle L, Gilbert J. Food Additives Contaminants 1987;4:385–98.
- [3] Monroy E, Wolff N, Ducruet V, Feigenbaum A. Analusis 1993;21:221–6.
- [4] Castle L, Jickells SM, Nichol J, Johns SM, Gramshaw JW. J Chromatogr A 1994;675:261–6.

- [5] Hamdani M, Feigenbaum A. Food Additives Contaminants 1996;13:717–30.
- [6] Kondyli E, Demertzis PG, Kontominas MG. Food Chemistry 1990;36:1–10.
- [7] Papaspyrides CD. J Appl Polym Sci 1986;32:6025-32.
- [8] Sandberg AE, Vaz R, Albanus L, Mattson P, Nilsson K. Var Föda 1992;34:470–82.
- [9] Castle L, Mercer AJ, Gilbert J. Food Additives Contaminants 1988;5:277–82.
- [10] Castle L, Mercer AJ, Gilbert J. Food Additives Contaminants 1991;8:565–76.
- [11] Ciba-Geigy, Private communication.
- [12] Pham QT, Pétiaud R, Waton H, Llauro-Darricades MF. Proton and carbon NMR spectra of polymers, London, UK/Boca Raton, FL: Penton Press/CRC Press, 1991.
- [13] Odian G. Principles of polymerization, 2. New York: Wiley, 1981 p. 83–84.